

Report

Uisce Éireann National Recovery and Resilience Plan - Sub-measure 3

Summary Report

Table of contents

Abi	breviations	5
1	Introduction	7
l.	Purpose of report	7
II.	Background	7
III.	Sub-measure 3 objectives	8
IV.	WWTPs	9
2	Site suitability assessment	10
3	Summary of monitoring	12
l.	Effluent data	12
II.	Ambient data	15
4	ECC tool	17
5	Summary	20
Apı	pendix 1	21
Apı	pendix 2	32
Apı	pendix 3	49
Tab	ole 1 WWTP site locations selected for effluent and ambient quality a	and
flov	v sampling	9
	ole 2 Locations where site suitability assessment was undertaken ole 3 Effluent and ambient parameters	
	ole 4 Summary of the total number of effluent samples taken for ea /TP	
	ole 5 Summary of the total number of ambient samples taken for ea	
	/TP	
Tab	ole 6 ECC Tool delivery tasks	17

The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may			
be made of the information contained therein.			

Abbreviations

Abbreviation	Description
AFA	Area for Action
BOD	Biological Oxygen Demand
cBOD	Carbonaceous Biological Oxygen Demand
COD	Chemical Oxygen Demand
CSMU	Catchment Science and Management Unit
DO	Dissolved Oxygen
ELV	Emission Limit Value
EPA	Environmental Protection Agency
EQS	Environmental Quality Standard
EU	European Union
HSO	High Status Objective
PE	Population Equivalent
RBMP	River Basin Management Plan
TN	Total Nitrogen
TSS	Total Suspended Solids
UÉ	Uisce Éireann
WAC	Wastewater Assimilative Capacity
WFD	Water Framework Directive
WWDL	Waste Water Discharge Licence

Abbreviation	Description
WWTP	Wastewater Treatment Plant

1 Introduction

I. Purpose of report

This document is the final report for sub-measure 3 under the NRRP Project 1.7: River Basin Management Plan – Enhanced Ambition Programme.

Milestone 42: Final Report

Sequence	Measure	Name	Completion Date
42.	Sub-measure 3	Final Report	Q3 2025

II. Background

Uisce Éireann's River Basin Management Plan Enhanced Ambition Programme is funded by the European Union under Ireland's National Recovery and Resilience Plan (NRRP). This will support the objectives of Ireland's River Basin Management Plans (RBMPs) and improve water quality in receiving waters by ensuring that Uisce Éireann assets are not impacting on the ability of receiving waters to achieve their water quality objectives under three sub-measures:

- a) Sub-measure 1 The upgrade of at least 10 Wastewater Treatment Plants (WWTPs);
- b) Sub-measure 2 completing feasibility studies for 20 WWTPs; and
- c) Sub-measure 3 undertaking effluent and water quality assessments to quantify improvements needed at these WWTPs

The three sub-measures in the Uisce Éireann proposal align with RBMP priorities, including:

- d) High status objective (HSO) water bodies;
- e) Area for Action (AFA) water bodies;
- f) Water bodies with water-related protected area objectives; and
- g) Urban wastewater significant pressures in 'at risk' water bodies.

III. Sub-measure 3 objectives

Sub-measure 3 involves investigation and assessment work in relation to the impact of Uisce Éireann assets on receiving water bodies. This work included:

- Collation and collection of high-quality baseline data
 - o Collation and gap analysis of available data.
 - o Sampling and analysis of effluent quality and ambient quality and flow.
- Modelling and assessment
 - Developing a bespoke Uisce Éireann online assimilative capacity calculation tool (the Environmental Capacity Calculator (ECC) tool) to:
 - Capture available effluent and ambient data;
 - Simulate the impact of discharges on receiving waters using a modelling approach;
 - Assess available assimilative capacity in receiving waters using a risk-based approach;
 - Use the above analysis to identify appropriate WWTP Emission Limit Values (ELVs).

The information and analysis produced by the Sub-measure 3 informs both Sub-measure 1 and Sub-measure 2; and supports the achievement of RBMP objectives generally through defining and developing approaches, methodologies and capabilities around the assessment of assimilative capacity in receiving waters and the identification of appropriate emission limit values for WWTP discharges.

IV. WWTPs

The WWTPs included in Sub-measure 1 and 2 are included in the Sub-measure 3 monitoring programme. These are listed in Table 1.

Table 1 WWTP site locations selected for effluent and ambient quality and flow sampling.

WWTP Name	License code	WWTP Name	License code
Abbeydorney	D0417-02	Granard	D0187-01
Balla	D0216-01	Granard	D0187-02
Ballindine	D0355-01	Kildavin	A0097-01
Ballingeary	D0431-01	Kilcoole	D0087-01
Ballintra	A0294-01	Kilcormac	D0225-01
Ballitore	A0129-01	Kilmaganny	A0155-01
Ballycanew	D0402-01	Kilkelly	D0357-01
Ballymoe	A0105-01	Killygordon	D0518-01
Blacklion	D0498-01	Millview (Milltownpass)	A0527-01
Clonea Power	A0377-01	Kilpedder	D0416-01
Borrisokane	D0326-01	Lisdoonvarna	D0077-01
Castlecomer	D0149-01	Mohill	D0277-01
Cloneygowan	A0167-01	Moycullen	D0191-01
Coill Dubh	D0242-01	Pettigo	A0461-01
Colecot Cottages	A0107-01	Mullinahone	D0456-01
Dunleer	D0111-01	Nurney	A0080-01
Galbally	A0208-01	Rathdowney	D0288-01
Grangemockler	A0416-01	Shercock	D0495-01

2 Site suitability assessment

Pre-survey site suitability assessments were undertaken to establish the suitability of ambient monitoring locations upstream and downstream of the WWTPs. This included existing and proposed monitoring locations, where multiple discharge locations were being considered in relation to a discharge. The assessments considered site suitability for both ambient and spot flow measurements, with the process including a preliminary desktop assessment in addition to site surveys.

An example of the reporting following a site suitability survey for the Kilkelly WWTP is included in Appendix 2.

Table 2 lists the ambient sites that have had site suitability assessments undertaken.

Table 2 Locations where site suitability assessment was undertaken.

	Licence			U/S & D/S of new/existing
WWTP Name	code	Easting	Northing	discharge point
Abbeydorney	D0417-02	86421	123622	Proposed new
Abbeydorney	D0417-02	85398	124320	Proposed new
Balla	D0216-01	125313	284386	Existing
Balla	D0216-01	121325	288610	Proposed new
Balla	D0216-01	131799	287931	Proposed new
Ballindine	D0355-01	136037	270010	Existing
Ballindine	D0355-01	135775	271566	Proposed new
Ballingeary	D0431-01	114470	66712	Proposed new
Ballingeary	D0431-01	115346	66791	Proposed new
Ballintra	A0294-01	191182	369813	Existing
Ballitore	A0129-01	279848	195717	Existing
Ballycanew	D0402-01	315038	152238	Existing
Ballycanew	D0402-01	315069	154958	Proposed new
Ballycanew	D0402-01	316244	156222	Proposed new
Ballymoe	A0105-01	169483	271734	Existing
Blacklion	D0498-01	208309	338365	Proposed new
Clonea Power	A0377-01	238469	114197	Existing
Borrisokane	D0326-01	190993	194135	Existing
Borrisokane	D0326-01	189533	193705	Proposed new
Castlecomer	D0149-01	253593	171608	Existing
Cloneygowan	A0167-01	248070	216205	Existing
Coill Dubh	D0242-01	279440	226989	Existing
Colecot Cottages	A0107-01	318875	254401	NA

	Licence			U/S & D/S of new/existing
WWTP Name	code	Easting	Northing	discharge point
Dunleer	D0111-01	305609	288522	Existing
Dunleer	D0111-01	305866	289711	Proposed new
Dunleer	D0111-01	306569	291102	Proposed new
Galbally	A0208-01	180784	127758	Existing
Grangemockler	A0416-01	235947	132588	Existing
Granard	D0187-01	233374	279501	Existing
Granard	D0187-02	230548	279685	Proposed new
Granard	D0187-02	229485	280547	Proposed new
Kildavin	A0097-01	289030	159747	Existing
Kildavin	A0097-01	289902	159695	Proposed new
Kilcoole	D0087-01	330757	207430	Existing
Kilcoole	D0087-01	329566	206257	Proposed new
Kilcoole	D0087-01	329723	210538	Proposed new
Kilcormac	D0225-01	218088	214314	Existing
Kilcormac	D0225-01	214976	214480	Proposed new
Kilcormac	D0225-01	213542	218804	Proposed new
Kilmaganny	A0155-01	245832	135204	Existing
Kilkelly	D0357-01	143828	291491	Existing
Killygordon	D0518-01	220271	394146	Existing
Millview				
(Milltownpass)	A0527-01	249750	243889	Existing
Kilpedder	D0416-01	326740	208929	Existing
Kilpedder	D0416-01	326914	210391	Proposed new
Kilpedder	D0416-01	326601	206531	Proposed new
Lisdoonvarna	D0077-01	112207	197725	Existing
Mohill	D0277-01	209065	296333	Existing
Mohill	D0277-01	211291	296078	Proposed new
Mohill	D0277-02	210246	293707	Proposed new
Moycullen	D0191-01	122243	232874	Existing
Moycullen	D0191-01	124586	229464	Proposed new
Moycullen	D0191-01	128073	228078	Proposed new
Pettigo	A0461-01	211315	366542	Existing
Mullinahone	D0456-01	233649	139609	Existing
Mullinahone	D0456-01	232907	136366	Proposed new
Mullinahone	D0456-01	233017	137328	Proposed new
Mullinahone	D0456-01	226687	135192	Proposed new
Nurney	A0080-01	273339	167640	Existing
Rathdowney	D0288-01	228492	178811	Existing
Rathdowney	D0288-01	230022	177735	Proposed new
Rathdowney	D0288-01	231684	177865	Proposed new
Shercock	D0495-01	267400	310088	Proposed new

3 Summary of monitoring

The monitoring programme incorporates one year of monthly effluent quality and ambient quality and flow data sampling and analysis. Table 3 lists the parameters that were tested for as part of the monitoring programme. Appendix 1 provides a simplified summary example of the effluent results for the Abbeydorney WWTP.

Table 3 Effluent and ambient parameters

Effluent parameters	Ambient parameters
рН	рН
Biochemical oxygen demand (BOD₅)	Dissolved oxygen
Chemical oxygen demand (COD)	Temperature
Total Ammonia (NH ₃ -N)	Conductivity
Suspended solids	Biochemical oxygen demand (BOD₅)
Orthophosphate (PO ₄ -P)	Chemical oxygen demand (COD)
	Total Ammonia (NH ₃ -N)
	Suspended solids
	Orthophosphate (PO ₄ -P)

The monitoring programme was completed at all sites in Q4 2024.

I. Effluent data

Table 4 below highlights the total number of samples taken within the monitoring programme.

Table 4 Summary of the total number of effluent samples taken for each WWTP.

WWTP	Number of samples taken at present	WWTP	Number of samples taken at present
Abbeydorney	12	Kilcoole	12
Balla	11	Moycullen	11
Ballindine	11	Kilcormac	12
Ballingeary	12	Kildavin	12
Ballintra	12	Kilkelly	12
Ballitore	12	Kill	12
Ballycanew	12	Mohill	11
Ballymoe	11	Killygordan	11
Ballynoe	12	Kilmaganny	12
Blacklion	9	Kilpedder	12
Borrisokane	12	Lisdoonvarna	12
Castlecomer	12	Millview	12
Clonea Power	12	Mullagh	12
Cloneygowan	12	Mullinahone	12
Coill Dubh	12	Nurney	12
Colecott Cottages	12	Pettigo	12
Dunleer	12	Portlaoise	12
Emyvale	12	Shercock	12
Galbally	12	Skibbereen	12
Granard	12	Tinahely	12
Grangemockler	12	Rathdowney	12

WWTP	Number of samples taken at present	WWTP	Number of samples taken at present
Tulla	12		

II. Ambient data

Table 5 below highlights the total number of samples taken within the monitoring programme.

Table 5 Summary of the total number of ambient samples taken for each WWTP.

WWTP	Number of samples taken	WWTP	Number of samples taken
Abbeydorney	42	Kilcoole	64
Balla	66	Kilcormac	68
Ballindine	44	Kildavin	51
Ballingeary	42	Kilkelly	24
Ballintra	24	Kill	24
Ballitore	24	Killygordan	24
Ballycanew	64	Kilmaganny	24
Ballymoe	22	Kilpedder	64
Ballynoe	24	Lisdoonvarna	24
Blacklion	20	Millview	24
Borrisokane	48	Mohill	46
Castlecomer	24	Moycullen	54
Clonea Power	24	Mullagh	24
Cloneygowan	24	Mullinahone	86
Coill Dubh	24	Nurney	22

WWTP	Number of samples taken	WWTP	Number of samples taken	
Colecott Cottages	24	Pettigo	24	
Dunleer	66	Portlaoise	24	
Emyvale	22	Shercock	24	
Galbally	24	Skibbereen	22	
Granard	69	Tinahely	24	
Grangemockler	22	Rathdowney	64	
Tulla	24			

4 ECC tool

Uisce Éireann has statutory obligations to assess the impact of its wastewater discharges on the receiving water environment to support its activities including investment planning, regulatory compliance, wastewater licencing, and river basin management planning.

Uisce Éireann routinely undertakes assessments of the impact of wastewater discharges on the receiving water environment, in line with its statutory obligations.

The introduction of standardised tools to apply existing methodologies would significantly improve the consistency and transparency of these assessments. The ECC tool offers a scalable, systematic approach that can be rapidly applied across multiple sites. Its development helps different parts of the business to work from the same reliable and consistent evidence base when evaluating the impact of wastewater discharges on the receiving water environment. This leads to better decision-making and reduces duplication of effort; which supports improved alignment across programmes and enables more targeted and effective investment.

The tasks involved in the delivery of the ECC Tool are outlined in Table 6.

Screengrabs illustrating the form and function of the tool are presented in Appendix 3.

An example output report, including the results of the calculations, is included in Appendix 4.

Table 6 ECC Tool delivery tasks

	Task	Description
1	Procurement of	Procurement of external technical support to develop a bespoke
	technical support	Uisce Éireann tool to calculate simple mass balance and Monte-Carlo analysis.

	Task	Description
2	Scoping workshops	Establishment of a core project team internally. Undertake scoping workshops to outline the data, IT systems, and end-user requirements and limitations with respect to tool development and the gathering of data to populate the tool.
3	Tool development	Development of a bespoke Uisce Éireann Monte-Carlo simulation tool with the capability of assessing the impact of discharges on river receiving water bodies using both simple mass balance and Monte-Carlo approaches, determining available assimilative capacities in receiving river water bodies and facilitating determination (in accordance with Uisce Éireann's interim Water Quality Impact Assessment (WQIA) Guidelines) of appropriate emission limit values for primary discharges to rivers. Screengrabs from the tool are presented in Appendix 3.
4	Data ingestion	Identification of gaps in the data (effluent data, ambient data, and riverine flows) required to undertake tool simulations. Preparation of a scope of works required to fill the data gaps, including publication of sites selected for sampling and analysis. Establishment of data mart on UÉ cloud where data for the tool is held and updated weekly and from where the data can be ingested into the tool.
5	Run simulations	Application of the tool to, at a minimum, the WWTPs identified in Sub-measures 1 and 2; and production of outcome reports for each WWTP outlining the resultant concentrations downstream of the primary discharges for a range of scenarios (e.g. current conditions, notionally clean, ELVs). An example output report is included in Appendix 4 of this report.
6	Final reporting and tool handover	Final report to include results of monitoring and tool simulations. Final handover of tool to include training materials and sessions for relevant Uisce Éireann staff.
7	Promotion and publicity	Internal and external promotion and awareness-raising in relation to the tool.

Note: all necessary internal governance steps are being completed as required throughout the process.

Uisce Éireann | SM3 Final Report

These tasks have all been completed and the tool was launched to endusers in December 2024.					

5 Summary

This report has demonstrated the achievement of the milestone through presenting:

- An overview of the monitoring programme and summary of results;
- Details of the ECC Tool development and outputs, which demonstrate massive gains in UÉ's capability around establishing required treatment standards to support RBMP objectives.

Appendix 1

Example of site suitability report for Kilkelly WWTP

Specialists in laboratory analysis, monitoring and environmental consultancy TMS Environment Ltd

53 Broomhill Drive

Tallaght

Phone: +353-1-4626710 Fax: +353-1-4626714

PRE-SURVEY SITE SUITABILITY ASSESSMENT KILKELLY (D0357-01), Co. MAYO

Report Ref: 32010-1 31 August 2023

Prepared by Dr Nick Owen, Craig O'Connor

Reviewed by: Dr Imelda Shanahan

Imelda Starahan

CONTENTS

1.0	INTRODUCTION	DN	3
2.0	IDENTIFICATION	ON OF MONITORING POINTS	3
	Table 1	Summary of mixing length estimates	
3.0	MONITORING	LOCATION DETAILS	6
4.0	CONCLUSION	s	6
	Table 2	Upstream monitoring location details	7
	Table 3	Downstream monitoring location details	8
	Appendix I M	xing Length Calculations	9
	Appendix II P	E, Flow and Dilution Ratios	11
	Appendix III P	hotographs of Monitoring Locations	13
	Figure 1	Upstream monitoring location	14
	Figure 2	Downstream monitoring location	14

Document Revision		TMS Approval	Uisce Éireann Approval			
			Approver	Date		
01 August 2023	Draft	IS				
16 August 2023	Draft #2	IS	KS	31 August 2023		

Site Suitability Assessment Kilkelly (D0357-01)

TMS Environment Ltd

Ref: 32010-1 Page 2 of 8

1.0 Introduction

A survey of the site was undertaken to establish the suitability of ambient monitoring

locations upstream and downstream of the waste water treatment plant (WWTP) at Kilkelly,

Co Mayo (D0357-01). The assessment was carried out in accordance with the following

reference documents:

(i) 21/041-001 Multi Party Framework for the provision of Laboratory Services RFMT for

the provision of Effluent and Ambient Monitoring Services; Annex 2 Scope.

(ii) Uisce Éireann Ambient Monitoring Guidelines; UE-ER-GL-008 Rev.1.0

(iii) Uisce Éireann BioSecurity-Aquatic sampling; IW-AMT-GL-007 Rev.1.0

(iv) Uisce Éireann BioSecurity standard operating procedure for Aquatic sampling; IW-AO-

SOP-010 Rev.1.0

(v) WHO UNEP Water Quality Monitoring Guidelines, 1996

(vi) ISO5667 Water Quality

(vii) IS EN ISO 18365: 2013. Hydrometry - Selection, establishment and operation of

gauging station.

This report presents a summary of the findings of the assessment in respect of the

identification of, and assessment of the suitability of, monitoring locations upstream and

downstream of the WWTP. The purpose of the assessment was to assess the suitability of the

existing monitoring points for the ambient monitoring.

2.0 IDENTIFICATION OF MONITORING POINTS

A preliminary desktop assessment was carried out in advance of visiting the site using

available resources which included the following:

Information on the treatment capacity of the WWTP;

License information on WWTP;

Channel width and depth;

Local hydrometric data;

Discharge characteristics.

Site Suitability Assessment Kilkelly (D0357-01)

TMS Environment Ltd

Uisce Éireann | SM3 Final Report

23

Ref: 32010-1 Page 3 of 8

Following review of the available data a preliminary assessment of the mixing zone was completed including a calculation of mixing length as shown in Appendix I. The mixing zone calculations were then compared with the approximate estimates taken from the Uisce Éireann Guidance (UE-ER-GL-008 Rev.1.0) as presented in Appendix II. The calculated mixing length falls within the range quoted in the Uisce Éireann guidance for this site.

An estimate of dilution factors which considers the discharge flow rate and receiving water body flow rate was also carried out for existing and proposed discharge locations and is summarised in Appendix II. The dilution ratios are large relative to the discharge rate and support a working assumption that the discharge flow rates are generally insignificant in determining mixing length. Specifically for Kilkelly, the dilution ratio is large and the discharge rate is not the dominant factor determining mixing length.

A summary of the mixing length estimates using the different approaches is shown in Table

1.

Table 1 Summary of mixing length estimates

	Calculated mixing length, m Appendix I		Dilution Ratio Appendix II
Existing discharge location	80	None, <5	444

A site survey was carried out on 26th July 2023 and the following factors were considered in the assessment of suitable locations for monitoring.

- The proposed monitoring locations provided by Uisce Éireann;
- The guidance provided by Uisce Éireann as noted in section 1.0;
- · The findings of the preliminary desktop assessment;
- The discharge rate of the WWTP i.e. the collected load;
- The discharge site, i.e. mid-channel or alongside the bank;
- Incoming streams/tributaries between the discharge sites and the u/s and d/s ambient monitoring sites;

Site Suitability Assessment Kilkelly (D0357-01)

TMS Environment Ltd

Uisce Éireann | SM3 Final Report

Ref: 32010-1 Page 4 of 8

- Influences from other sources of pollution between the discharge and upstream and downstream monitoring sites;
- Health and safety issues and site accessibility. The monitoring sites should provide safe, and relatively easy, access to sampling personnel at all times, and should consider factors such as:
 - Bank profiles;
 - Seasonal variation in flow rates and conditions that might affect access e.g.
 vegetation cover, soil conditions;
 - Land ownership and the ability to access to private lands;
 - Safe car parking;
 - Distance to be walked.
 - The suitability of the site for spot flow measurement

This ambient site suitability report includes the following:

- Coordinates of existing and proposed new ambient monitoring site(s);
- Weather conditions on the day as well as preceding weather conditions;
- Photographs of all sites;
- Details of access and any other relevant issues;
- Details of safe parking and distance from parking to sites;
- Details of immediate local land use on each riverbank;
- Details of any evidence of agricultural access to river (evidence of poaching or cattle tracks to river, lack of fencing, animal faeces in river/riverbanks);
- Details of any evidence of abstraction (permanent/temporary) from surface waters;
- Details of any evidence of point/diffuse inputs to surface waters;
- Details of any evidence of any other pressures acting on surface waters;
- Assessment of whether in-situ works, such as sampling platforms, would be desirable.

Following the assessment of all these factors, the existing downstream monitoring location was deemed suitable for this project. For the upstream location, the proposed monitoring point is not significantly different from the existing location. It is moved slightly to allow for greater access to the river for spot flow measurements, as the current site is not suitable.

Site Suitability Assessment Kilkelly (D0357-01)

TMS Environment Ltd

Ref: 32010-1 Page 5 of 8

3.0 MONITORING LOCATION DETAILS

Details of the Upstream and downstream monitoring locations are presented in Table 2 and Table 3. Photographs of the monitoring locations are included at Appendix III.

4.0 CONCLUSIONS

The existing downstream monitoring location was found to be suitable for the project. A new upstream monitoring location is proposed due to unsuitability of the existing location.

Site Suitability Assessment Kilkelly (D0357-01)

TMS Environment Ltd

Ref: 32010-1 Page 6 of 8

Table 2 Upstream monitoring location details

Table 2 Opstream mor	iltoring location details
Location	Kilkelly (D0357-01) Co Mayo
	Upstream.
Monitoring Location	144355E 291588N
coordinates and distance	-551m upstream of discharge
from discharge	-115m upstream of existing location
	Better channel section for flow measurements.
Existing monitoring	144244E 291575N
location coordinates and	-436m upstream of discharge
distance from discharge	Site inaccessible due to excess vegetation.
Weather	Heavy rain and overcast on day of assessment, showers on
	days preceding assessment.
Discharge location	143828E 291491N – Bank discharge – visual observation.
Access to location for	Park in hard shoulder adjacent to unnamed bridge at
spot flow measurements	144340E 291599N, short walk to sampling location
and ambient sampling	(approximately 20-25m). Step over small fence and walk
	down to river bank on right hand side facing upstream,
	approximately 10m upstream of the bridge.
Land use	Land either side is used for agriculture, no signs of animals
	entering river. River banks are steep, but little vegetation
	(grass). Little weed growth in channel. Channel substrate is
	cobbles / sand and silt.
Pressures	No evidence of abstraction, inputs to surface waters or any
	other pressures between proposed location and discharge.
Suitability assessment	Suitable for installation of permanent gauging station.
Channel dimensions	2.9m wide, 1.1m depth (max)
Recommended method of	Current meter, wading.
spot flow measurement	
Recommended method of	Direct (by hand)
water sampling	
Recommended works	None specific.

Site Suitability Assessment Kilkelly (D0357-01)

Ref: 32010-1 Page 7 of 8

Table 3 Downstream monitoring location details

Table 3 Downstream r	nonitoring location details
Location	Kilkelly (D0357-01) Co Mayo
	Downstream.
Proposed Location	143777E 291440N
coordinates and distance	-82m downstream of discharge
from discharge	Better channel cross section for flow measurements than
	existing site.
Existing monitoring	143767E 291432N
location coordinates and	-95m downstream of discharge.
distance from discharge	
Weather	Heavy rain and overcast on day of assessment, showers on
	days preceding assessment.
Discharge location	143828E 291491N – Bank discharge – visual observation.
Access to location for	Park in layby adjacent to river, short walk to site (10-15m).
spot flow measurements	Gentle slope into river bank, approximately 5m upstream of
and ambient sampling	the unnamed bridge at 143762E 291428N
Land use	Land either side is used for agriculture, no signs of animals
	entering river. River banks are steep, but little vegetation
	(grass). No weed growth in channel. Channel substrate is
	cobbles / sand and silt.
Pressures	No evidence of abstraction, inputs to surface waters or any
	other pressures.
Suitability assessment	Suitable for installation of permanent gauging station, but
	area is very accessible – vandalism could be an issue.
Channel dimensions	3.7m wide, 0.5m depth (max)
Recommended method of	Current meter, wading.
spot flow measurement	
Recommended method of	Direct (by hand)
water sampling	
Recommended works	None specified.
Estimated mixing length	80m.
Estimated distance	82m.
downstream of discharge	

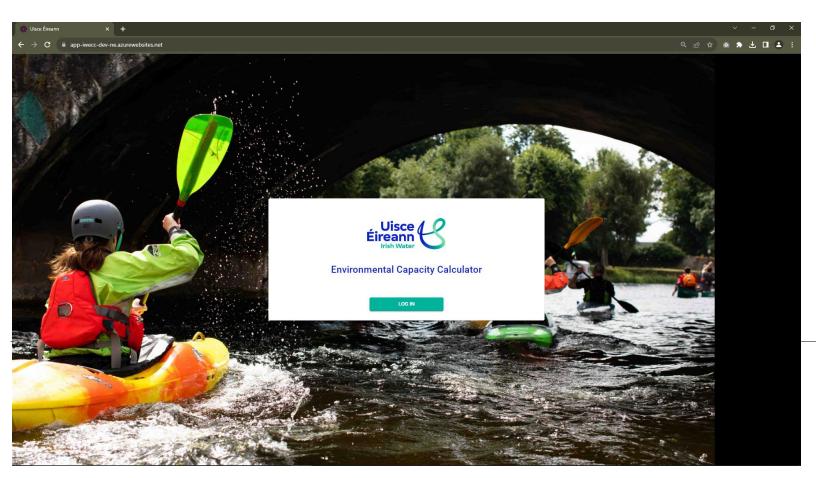
	Discharge Location 1 (1438							
GGS (1985), 'Techniques of Water	Resources, Book 3, Measurement	of Discharge Using Tracer	s' Inputs for Mixing Calculation:					
					Units		Units	Source
quation:	Where:		Mean stream width (representative rectang	2.9	Е	9.5149	ft	Estimated from OSI map/aerial photos
-0		Units	Mean stream depth (representative rectang	0.307	m	1.007267	ft	Calculated from Manning Equation
$L_m = K \frac{vB^2}{E_z}$	L _m Mixing length	ft	Mean stream flow (=Q65%ile)	0.402	m3/s	14.19651	ft3/s	Estimated from EPA Hydrotool
$L_{\rm m}=K_{\rm E}$	K Coefficient (varies, see Tabl		Mean stream velocity	0.451	m/s	1.479731	ft/s	Calculated from Manning Equation
Lz	v Mean stream velocity	ft/s	Water surface slope	0.002		0.002		Estimated from OSI map
	B Mean stream width	ft						
	E ₂ Transverse mixing coefficient		Calculation of Mixing Length (Average Cond	litions):				
ansverse mixing coefficient:	d Mean stream depth	ft	K	0.1				
F = 1 1243/2-1/2	s Water surface slope		v	1.479731	ft/s			
E _z =1.13d ^{3/2} s ^{1/2}			В	9.5149	ft			
			E,	0.051087				
			L _m	262.2291	ft			
oefficient K:								
Number and	Coefficient, K		L _n	80	m			
location of injection points	Percentage mixing 90 95 98							
ingertion points	30 33 30							
One center injection	0.070 0.100 0.140							
Two injection points a	0.018 0.025 0.035							
Three injection points b	0.008 0.011 0.016							
One side injection point	0.280 0.400 0.560							
ssumptions:								
. Straight uniform channel								
Rectangular cross-section with u	uniform velocity							
Laminar flow								
Continuous injection at uniform	rate							
No other inputs or outputs in re	ach							
Manning Equation:								
Manning's Equation	Calculation of depth & velocity:							
		Units	_					
V = R20 S12	b Mean stream width	2.9 m	4					
	d Mean stream depth	0.307 m	-					
V is average velocity (m/s) R = hydraulic radius (m)	A Wetted area	0.8903 m ²						
S = energy slope (m/m)	P Wetted perimeter	3.514 m	-					
n = Manning's roughness coefficient	R Hydraulic radius	0.253357997 m						_
	S Energy slope	0.002 -						
to Cuitobility Associat	n tanning roughness coefficier	0.04 -	-					Re tms environment ltd
TO SUITSBUILD BEEDERS	CHEAD INVESTIGATION OF THE PROPERTY (**)	d 451772564 m/s						KO

TMS Environment Ltd

UniqueID	Channel width (m)	UE Guidance on mixing length	PE	Discharge Rate (m3/d)	Discharge Rate (I/s)	Average Channel flow m3/s	Average Channel flow I/s	Dilution Ratio (No.:1)
Kilkelly D0357	2.9	None, <5	433.3052	77.994936	0.90	0.402	402	445

Figure 1 Upstream monitoring location

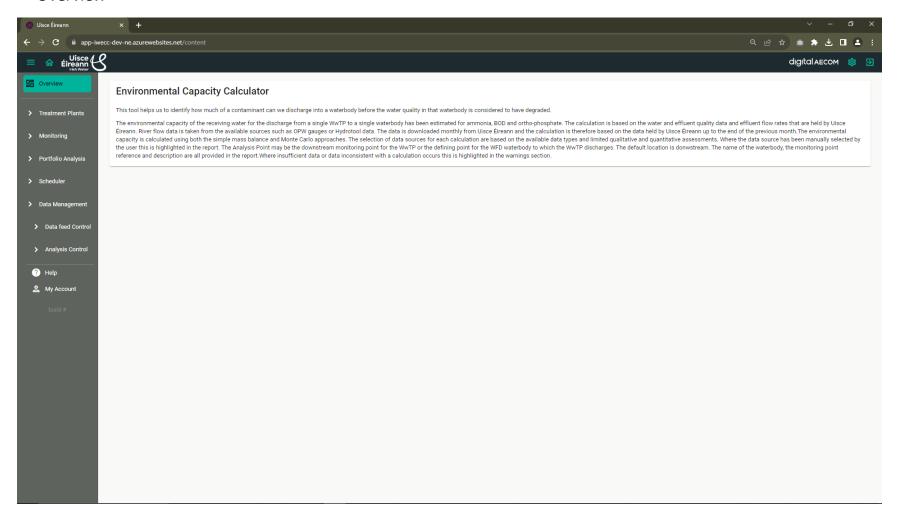
Figure 2 Downstream monitoring location

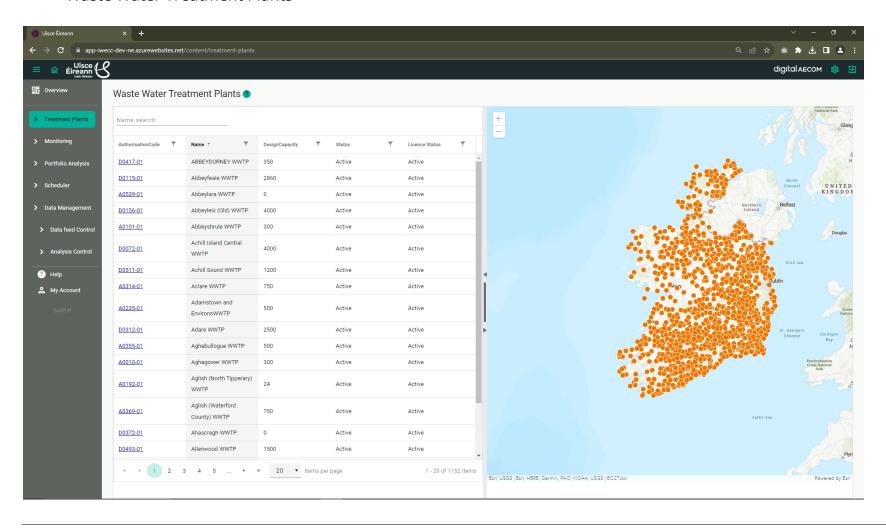

Site Suitability Assessment Kilkelly (D0357-01)

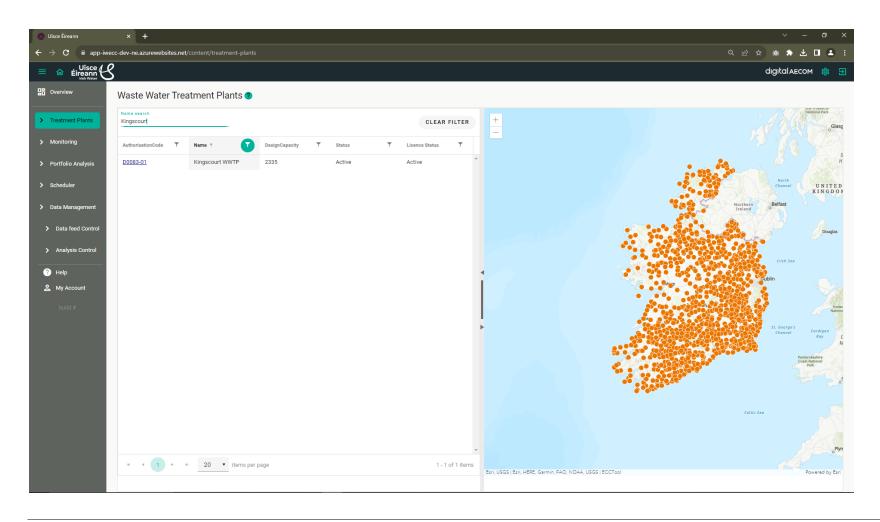
Ref: 32010-1 Appendix III

Appendix 2

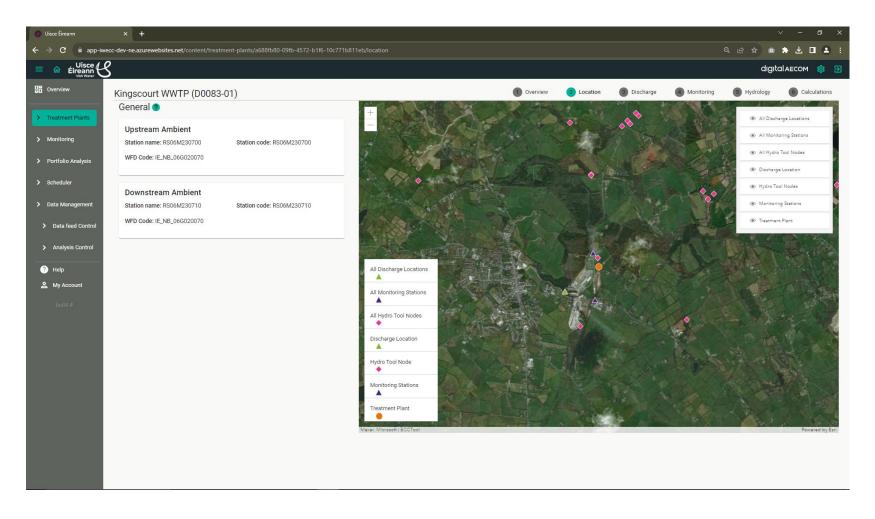
Screengrabs illustrating the form and function of the Environmental Capacity Calculation tool.

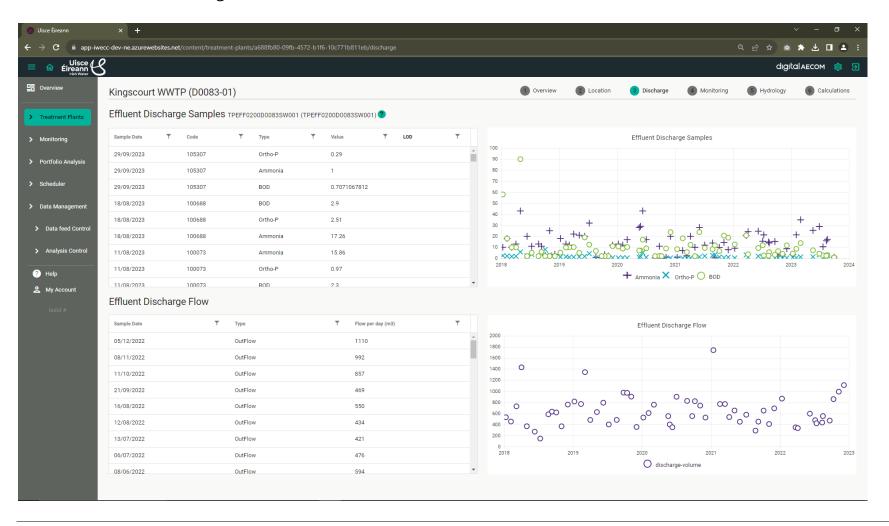

Landing page

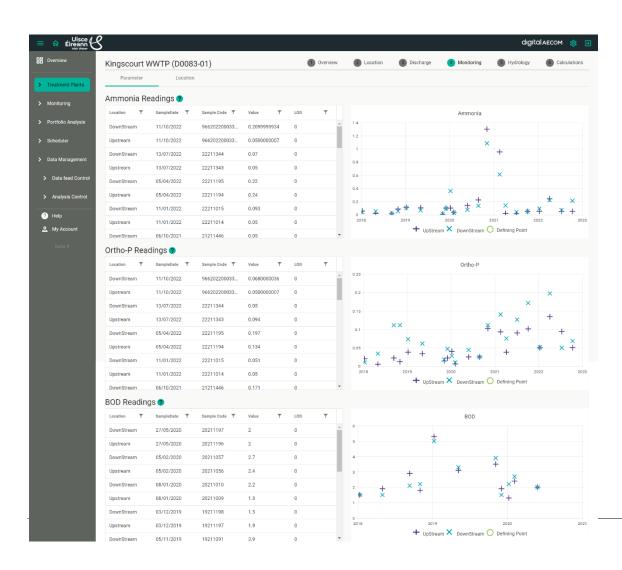

Login Page

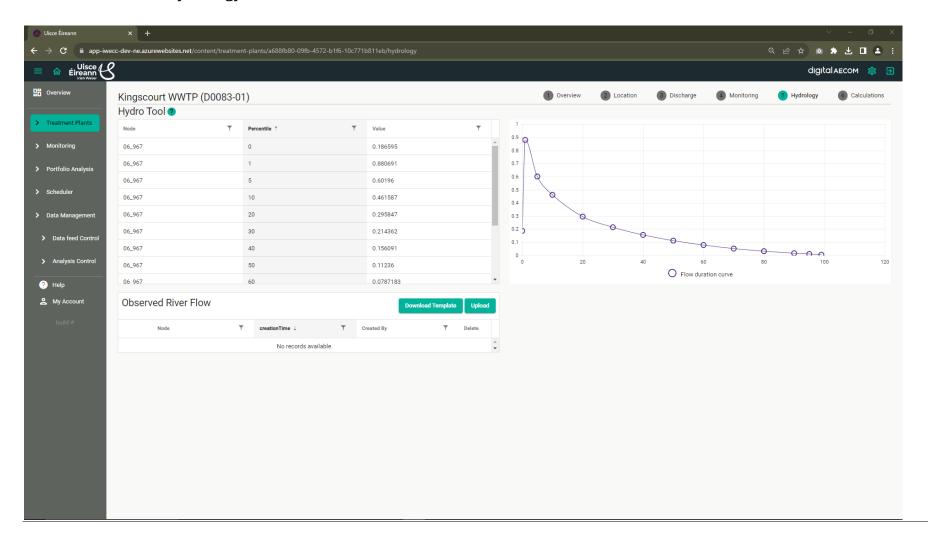

Overview

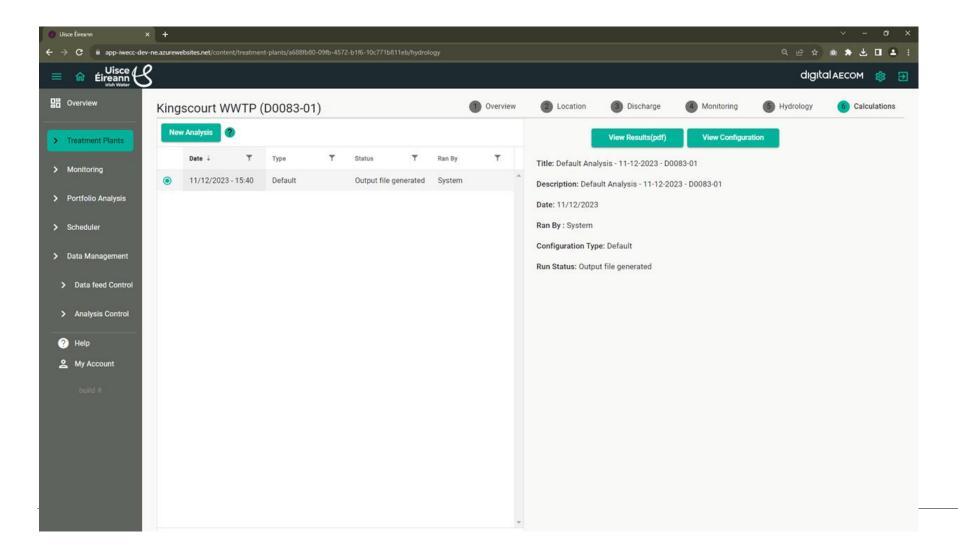
Waste Water Treatment Plants

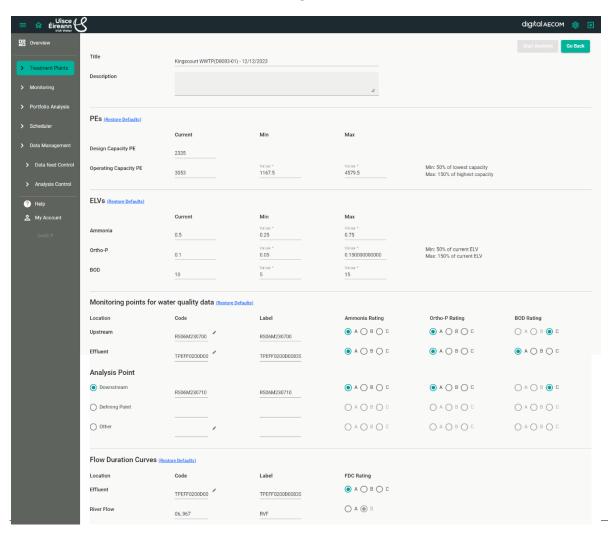

Filtering on Waste Water Treatment Plants

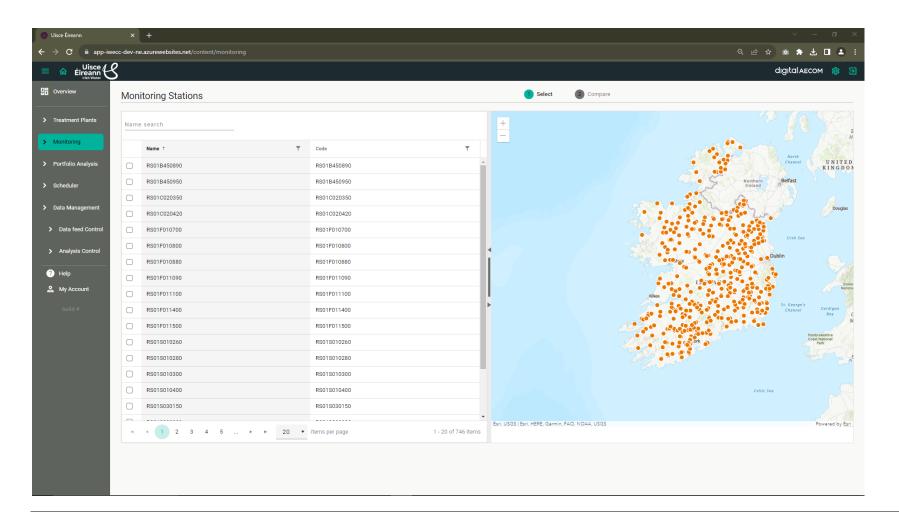

Waste Water Plant Overview

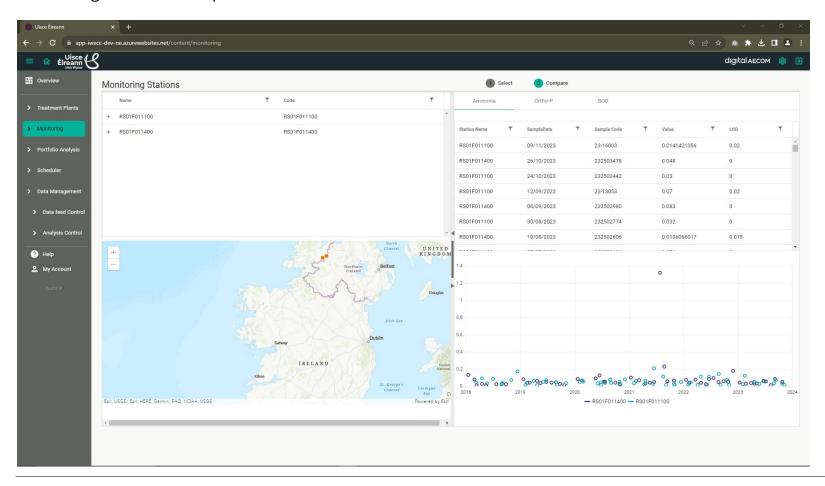

Waste Water Plant Location

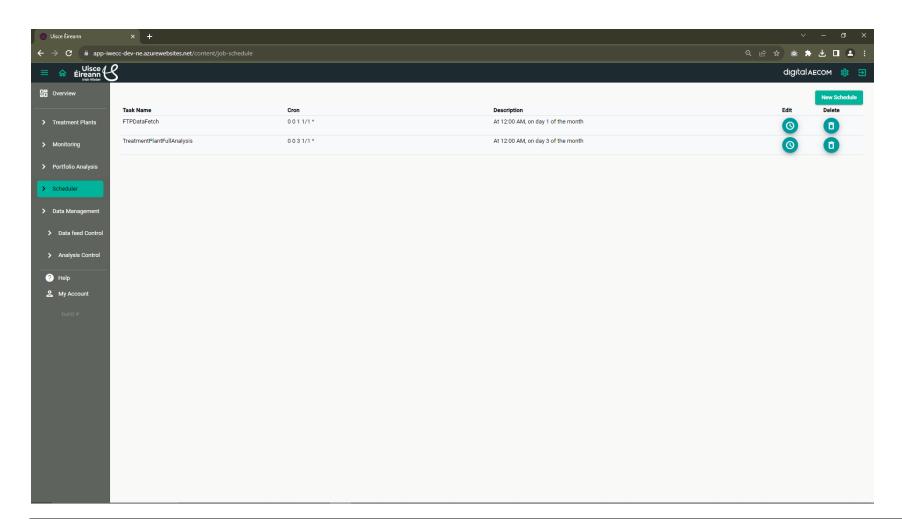

Waste Water Plant Discharge

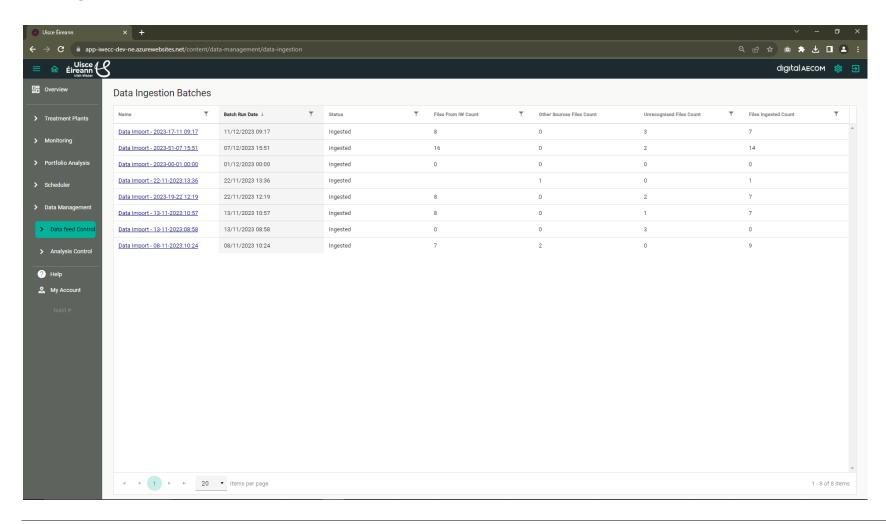

Waste Water Plant Monitoring

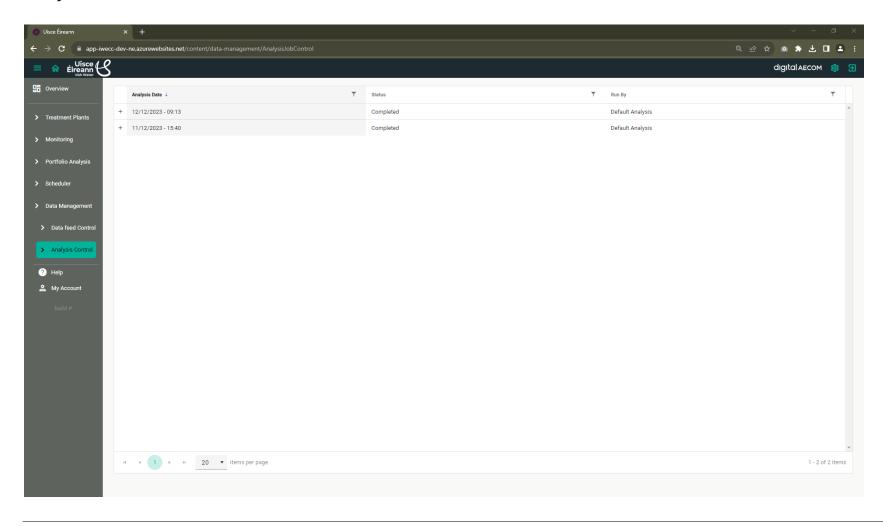

Waste Water Plant Hydrology


Waste Water Plant Calculations - Overview

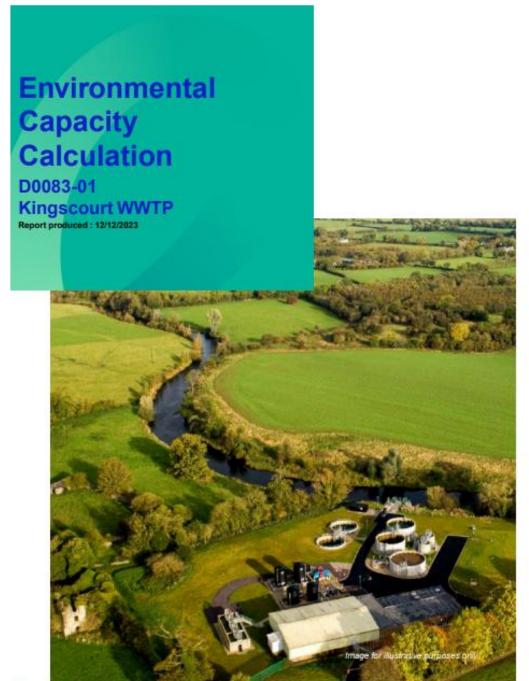

Waste Water Plant Calculations – Configuration


Monitoring Stations


Monitoring Stations - Compare Stations


Scheduler

Data Ingestion


Analysis Control

Appendix 3

Example of an Environmental Capacity Calculation output report. **Note: The** data presented below is illustrative and is for purposes of demonstrating the ECC Tool, it does not constitute a site assessment.

Table of Contents

1. Introduction	2
1.1 Introduction	2
1.2 Wastewater Treatment Plant (WwTP) Information	2
1.3 Scenario Description	2
1.4 Water Quality (Based on Current Operating Concentrations)	3
1.5 Waterbody Capacity Calculation (Based on Current Operating PE = 3,053)	3
1.6 Data Sources	3
1.7 Analysis Statements	4
1.8 Warning Messages	4
2. Mass Balance Calculation Results	5
2.1: Scenario 1 - Current Operations	5
2.2: Scenario 2 - ELV	5
2.3: Scenario 3 - Notionally Clean	6
2.4: Scenario 4 - Treatment Level	6
3. Capacity Calculation Results	7
3.1 Effects of Population on Concentration for Scenarios 1 to 3 - MCA	7
3.2 Effect of Effluent Discharge Concentration on Downstream Analysis Point for Scenario 4 - MCA	7
3.3 Effects of Population on Concentration for Scenarios 1 to 3 - SMBA	8
3.4 Effect of Effluent Discharge Concentration on Downstream Analysis Point for Scenario 4 - SMBA	8
4. Effluent Quality	9
5. Effluent Flow Rates	10
6. Hydrology	11
7. River Water Quality at the Upstream and Analysis Points	12
7.1 Water Quality at Upstream	12
7.2 Water Quality at Analysis Point (Downstream)	13
Appendix A - Glossary	14
Appendix B - Methodology	15
Appendix C - Mass Balance Calculation Results - MCA	16
Annendix D - Mass Ralance Calculation Results - SMRA	24

1. Introduction

1.1 Introduction

The environmental capacity of the receiving water for the discharge from a single WwTP to a single waterbody has been estimated for ammonia, BOD and ortho-phosphate. The calculation is based on the water and effluent quality data and effluent flow rates that are held by Uisce Éireann. River flow data is taken from the available sources such as OPW gauges or Hydrotool data. The data is downloaded monthly from Uisce Éireann and the calculation is therefore based on the data held by Uisce Éireann up to the end of the previous month. The environmental capacity is calculated using both the simple mass balance and Monte Carlo approaches. The selection of data sources for each calculation are based on the available data types and limited qualitative and quantitative assessments. Where the data source has been manually selected by the user this is highlighted in the report. The Analysis Point may be the downstream monitoring point for the WwTP or the defining point for the WFD waterbody to which the WwTP discharges. The default location is donwstream. The name of the waterbody, the monitoring point reference and description are all provided in the report. Where insufficient data or data inconsistent with a calculation occurs this is highlighted in the warnings section. Appendix A provides a Glossary of terms used in this report. The methodology for the calculation is described in Appendix B.

1.2 Wastewater Treatment Plant (WwTP) Information

Analysis date and time	12/12/2023
WwTP Number	D0083-01
WwTP Name	Kingscourt WWTP &
Analysis Point	Downstream
Monitoring Station Name	RS06M230710
Discharge Points	Primary (TPEFF0200D0083SW001)
Analysis Type	Placeholder: Default or custom analysis
Description	User generated analysis: Kingscourt analysis
Notes	User generated analysis: Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

	Design	Operating	Headroom	Headroom Available
WwTP Capacity [PE]	2,335	3,053	-718	Negative headroom
Mean Effluent Flow Rate [m3/d]		0.007		

	Ammonia	BOD	Ortho-P
	95th percentile	95th percentile	Mean
ELV [mg/l]	0.50	10.00	0.10
Effluent Concentration [mg/l]	28.12	21.25	0.66

More detailed analysis of the effluent quality is provided in section 4.

1.3 Scenario Description

Description

Scenario 1 - Current Operations	Simulate the impact of a change in effluent flow rate with effluent concentration the same as current operations. All other parameters constant.
Scenario 2 - ELV	Simulate the impact of a change in effluent flow rate with the effluent quality at the ELV. All other parameters constant.
Scenario 3 - Notionally Clean	Simulate the impact of a change in the effluent flow rate with effluent concentration the same as current operations. River water quality set at 20% of the High/Good threshold.
Scenario 4 - Treatment Level	Simulate the impact of higher and lower effluent concentration for the current operating flow rate. All other parameters constant.

1.4 Water Quality (Based on Current Operating Concentrations)

Concentration is the 50th percentile for ortho-P and the 95th percentile for ammonia and BOD.

	Ammonia	BOD	Ortho-P	Monitoring Station
Upstream [mg/l]	1.142	2.200	0.091	RS06M230700
Upstream Indicative Quality	Moderate	High	Poor	
Downstream [mg/l]	0.870	2.200	0.093	RS06M230710
Downstream Indicative Quality	Moderate	High	Poor	

1.5 Waterbody Capacity Calculation (Based on Current Operating PE = 3,053)

		SMBA			MCA	
	Ammonia	BOD	Ortho-P	Ammonia	BOD	Ortho-P
Scenario 1 [PE]	>4,580	>4,580	3,858	>4,580	>4,580	<1,160
Scenario 2 [PE]	>4,580	>4,580	>4,580	>4,580	>4,580	<1,160
Scenario 3 [PE]	>4,580	>4,580	3,286	>4,580	>4,580	1,360
Scenario 4 [PE]	Placeholder	Placeholder	Placeholder	Placeholder	Placeholder	Placeholder

1.6 Data Sources

Location	Ammonia	BOD	Ortho-P1
Upstream	A (10 records)	C (0 records)	A (10 records)
Effluent	A (38 records)	A (38 records)	A (38 records)
Downstream	A (10 records)	C (0 records)	A (10 records)
Location	Data Source	$\omega_{h_{i,1}}$	
Effluent Flow	A (29 records)		
River Flow	B (14 records)		

Data Source Description

Input Parameter	Α	В	С		
River Flow	Flow duration curve from detailed site-specific analysis.	Flow duration curve using a Hydrotool point close to the WWTP discharge point.	Flow duration curve using a Hydrotool point distant from outfall scaled by catchment area.		
Upstream Water Quality					
Downstream Water Quality	Cumulative distribution function generated from EPA and Uisce Éireann	Probability distribution calculated from statistics	Probability distribution based on Notionally Clean mean and 95%ile conditions (20% of High Status EQS limits).		
Analysis Defining Point Water Quality	observed data.	from observed data.			
Effluent Flow	Cumulative distribution function generated from Uisce Éireann monitoring	Probability distribution calculated from statistics	Probability distribution generated using mean and standard deviation approximated from population equivalent		
Effluent Quality	data.	from observed data.	Probability distribution based on treatment type (primary, secondary, tertiary).*		

^{*} Not implemented in the current version; awaiting agreement of values with Uisce Eireann.

1.7 Analysis Statements

Placeholder: Increasing x by y we see z
 Placeholder: Increasing x by y we see z

Placeholder: Increasing x by y we see z

1.8 Warning Messages

The river water data for the DownStream point is assumed to be notionally clean - BOD

The river water data for the Upstream point is assumed to be notionally clean - BOD

2. Mass Balance Calculation Results

2.1: Scenario 1 - Current Operations

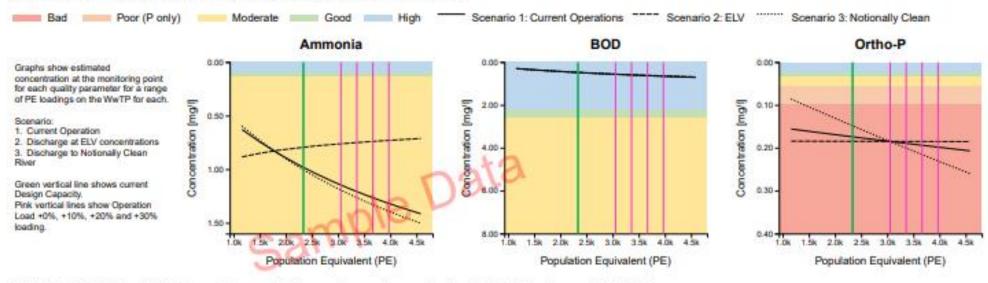
			Ammo	onia Conce	entrations [r	mg/l]	ВС	D Concent	rations [mg/	ŋ	Ortho-P Concentrations [mg/l]				
Calculation	PE	Effl. Flow			Definin	g Point			Defining	Defining Point				Defining Point	
Code		[m3/s]	Effluent	River	MCA	SMBA	Effluent	River	MCA	SMBA	Effluent	River	MCA	SMBA	
Operating	3,053	0.007	28.117	1.129	0.836	0.836	21.225	0.406	0.406	0.406	0.659	0.091	0.091	0.091	
Design	2,335	0.005	28.117	1.129	0.728	0.728	21.225	0.406	0.339	0.339	0.659	0.091	0.086	0.086	
Calc. 0	1,160	0.003	28.117	1.129	0.546	0.546	21.225	0.406	0.224	0.224	0.659	0.091	0.077	0.077	
Calc. 1	1,502	0.003	28.117	1.129	0.600	0.600	21.225	0.406	0.258	0.258	0.659	0.091	0.080	0.080	
Calc. 2	1,844	0.004	28.117	1.129	0.653	0.653	21.225	0.406	0.291	0.291	0.659	0.091	0.082	0.082	
Calc. 3	2,186	0.005	28.117	1.129	0.706	0.706	21.225	0.406	0.324	0.324	0.659	0.091	0.085	0.085	
Calc. 4	2,528	0.006	28.117	1.129	0.758	0.758	21.225	0.406	0.357	0.357	0.659	0.091	0.087	0.087	
Calc. 5	2,870	0.006	28.117	1.129	0.809	0.809	21.225	0.406	0.389	0.389	0.659	0.091	0.090	0.090	
Calc. 6	3,212	0.007	28.117	1.129	0.859	0.859	21.225	0.406	0.421	0.421	0.659	0.091	0.092	0.092	
Calc. 7	3,554	0.008	28.117	1.129	0.909	0.909	21.225	0.406	0.453	0.453	0.659	0.091	0.095	0.095	
Calc. 8	3,896	0.008	28.117	1.129	0.959	0.959	21.225	0.406	0.484	0.484	0.659	0.091	0.097	0.097	
Calc. 9	4,238	0.009	28.117	1,129	1.008	1.008	21.225	0.406	0.514	0.514	0.659	0.091	0.100	0.100	
Calc. 10	4,580	0.010	28.117	1.129	1.056	1.056	21.225	0.406	0.545	0.545	0.659	0.091	0.102	0.102	

2.2: Scenario 2 - ELV

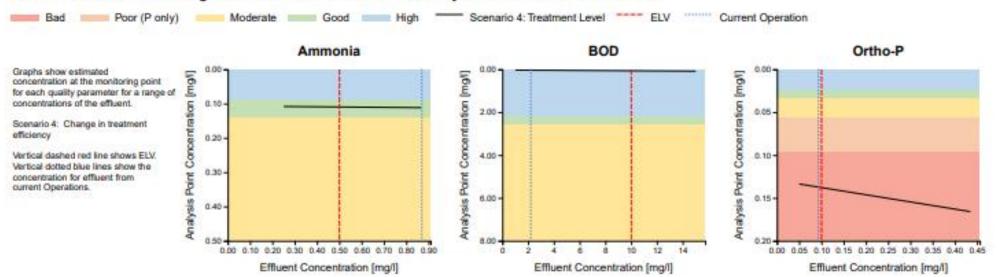
	Ammonia Concentrations [mg/l]					g/l]	во	D Concent	rations [mg/	ıj	Ortho-P Concentrations [mg/l]				
Calculation	PE	Effl. Flow			Defining	Point			Defining	Point			Defining	Point	
Code		[m3/s]	Effluent	River	MCA	SMBA	Effluent	River	MCA	SMBA	Effluent	River	MCA	SMBA	
Operating	3,053	0.007	0.500	1.129	0.836	0.836	10.000	0.406	0.406	0.406	0.100	0.091	0.091	0.091	
Design	2,335	0.005	0.500	1.129	0.842	0.842	10.000	0.406	0.354	0.354	0.100	0.091	0.091	0.091	
Calc. 0	1,160	0.003	0.500	1.129	0.852	0.852	10.000	0.406	0.266	0.266	0.100	0.091	0.091	0.091	
Calc. 1	1,502	0.003	0.500	1.129	0.849	0.849	10.000	0.406	0.292	0.292	0.100	0.091	0.091	0.091	
Calc. 2	1,844	0.004	0.500	1.129	0.846	0.846	10.000	0.406	0.318	0.318	0.100	0.091	0.091	0.091	
Calc. 3	2,186	0.005	0.500	1.129	0.843	0.843	10.000	0.406	0.343	0.343	0.100	0.091	0.091	0.091	
Calc. 4	2,528	0.006	0.500	1.129	0.840	0.840	10.000	0.406	0.368	0.368	0.100	0.091	0.091	0.091	
Calc. 5	2,870	0.006	0.500	1.129	0.838	0.838	10.000	0.406	0.393	0.393	0.100	0.091	0.091	0.091	
Calc. 6	3,212	0.007	0.500	1.129	0.835	0.835	10.000	0.406	0.418	0.418	0.100	0.091	0.091	0.091	
Calc. 7	3,554	0.008	0.500	1.129	0.832	0.832	10.000	0.406	0.442	0.442	0.100	0.091	0.091	0.091	
Calc. 8	3,896	0.008	0.500	1.129	0.829	0.829	10.000	0.406	0.466	0.466	0.100	0.091	0.091	0.091	
Calc. 9	4,238	0.009	0.500	1.129	0.826	0.826	10.000	0.406	0.489	0.489	0.100	0.091	0.091	0.091	
Calc. 10	4,580	0.010	0.500	1.129	0.824	0.824	10.000	0.406	0.513	0.513	0.100	0.091	0.091	0.091	

2.3: Scenario 3 - Notionally Clean

	Ammonia Concentrations [mg/l]						во	D Concent	rations [mg/	ŋ	Ortho-P Concentrations [mg/l]			
Calculation	PE	Effl. Flow			Defining	Point			Defining	Point			Defining	Point
Code		[m3/s]	Effluent	River	MCA	SMBA	Effluent	River	MCA	SMBA	Effluent	River	MCA	SMBA
Operating	3,053	0.007	28.117	0.018	0.836	0.836	21.225	0.440	0.406	0.406	0.659	0.005	0.091	0.091
Design	2,335	0.005	28.117	0.018	0.650	0.650	21.225	0.440	0.340	0.340	0.659	0.005	0.073	0.073
Calc. 0	1,160	0.003	28.117	0.018	0.335	0.335	21.225	0.440	0.228	0.228	0.659	0.005	0.043	0.043
Calc. 1	1,502	0.003	28.117	0.018	0.428	0.428	21.225	0.440	0.261	0.261	0.659	0.005	0.052	0.052
Calc. 2	1,844	0.004	28.117	0.018	0.520	0.520	21.225	0.440	0.294	0.294	0.659	0.005	0.061	0.061
Calc. 3	2,186	0.005	28.117	0.018	0.611	0.611	21.225	0.440	0.326	0.326	0.659	0.005	0.069	0.069
Calc. 4	2,528	0.006	28.117	0.018	0.701	0.701	21.225	0.440	0.358	0.358	0.659	0.005	0.078	0.078
Calc. 5	2,870	0.006	28.117	0.018	0.789	0.789	21.225	0.440	0.390	0.390	0.659	0.005	0.087	0.087
Calc. 6	3,212	0.007	28.117	0.018	0.877	0.877	21.225	0.440	0.421	0.421	0.659	0.005	0.095	0.095
Calc. 7	3,554	0.008	28.117	0.018	0.963	0.963	21.225	0.440	0.452	0.452	0.659	0.005	0.104	0.104
Calc. 8	3,896	0.008	28.117	0.018	1.048	1.048	21.225	0.440	0.482	0.482	0.659	0.005	0.112	0.112
Calc. 9	4,238	0.009	28.117	0.018	1.132	1.132	21.225	0.440	0.512	0.512	0.659	0.005	0.120	0.120
Calc. 10	4,580	0.010	28.117	0.018	1.216	1.216	21.225	0.440	0.542	0.542	0.659	0.005	0.128	0.128

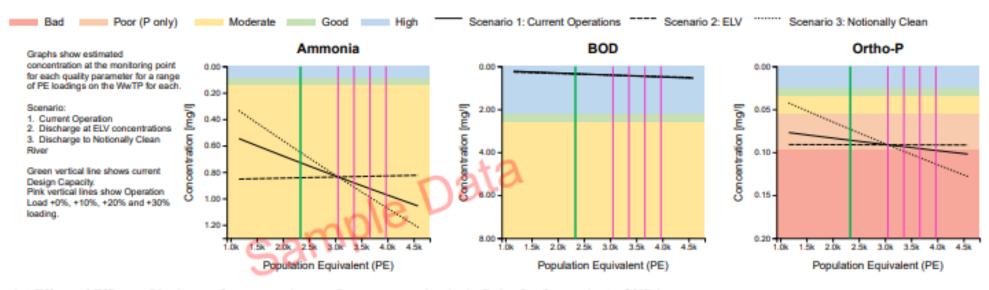

2.4: Scenario 4 - Treatment Level

2.4. Octilatio 4 - Heatment Level														
			Ammonia Concentrations [mg/l]			BOD Concentrations [mg/l]			Ortho-P Concentrations [mg/l]					
Calculation	PE	Effl. Flow			Defining Point				Defining Point				Defining Point	
Code		[m3/s]	Effluent	River	MCA	SMBA	Effluent	River	MCA	SMBA	Effluent	River	MCA	SMBA
Operating	3,053	0.007	28.117	1.129	0.836	0.836	21.225	0.406	0.406	0.406	0.659	0.091	0.091	0.091
Design	3,053	0.007	0.500	1.129	0.347	0.347	10.000	0.406	0.244	0.244	0.100	0.091	0.068	0.068
Calc. 0	3,053	0.007	0.250	1.129	0.342	0.342	5.000	0.406	0.172	0.172	0.050	0.091	0.066	0.066
Calc. 1	3,053	0.007	0.300	1.129	0.343	0.343	6.000	0.406	0.186	0.186	0.060	0.091	0.066	0.066
Calc. 2	3,053	0.007	0.350	1.129	0.344	0.344	7.000	0.406	0.201	0.201	0.070	0.091	0.067	0.067
Calc. 3	3,053	0.007	0.400	1.129	0.345	0.345	8.000	0.406	0.215	0.215	0.080	0.091	0.067	0.067
Calc. 4	3,053	0.007	0.450	1.129	0.346	0.346	9.000	0.406	0.229	0.229	0.090	0.091	0.068	0.068
Calc. 5	3,053	0.007	0.500	1.129	0.347	0.347	10.000	0.406	0.244	0.244	0.100	0.091	0.068	0.068
Calc. 6	3,053	0.007	0.550	1.129	0.348	0.348	11.000	0.406	0.258	0.258	0.110	0.091	0.069	0.069
Calc. 7	3,053	0.007	0.600	1.129	0.348	0.348	12.000	0.406	0.273	0.273	0.120	0.091	0.069	0.069
Calc. 8	3,053	0.007	0.650	1.129	0.349	0.349	13.000	0.406	0.287	0.287	0.130	0.091	0.069	0.069
Calc. 9	3,053	0.007	0.700	1.129	0.350	0.350	14.000	0.406	0.302	0.302	0.140	0.091	0.070	0.070
Calc. 10	3,053	0.007	0.750	1.129	0.351	0.351	15.000	0.406	0.316	0.316	0.150	0.091	0.070	0.070

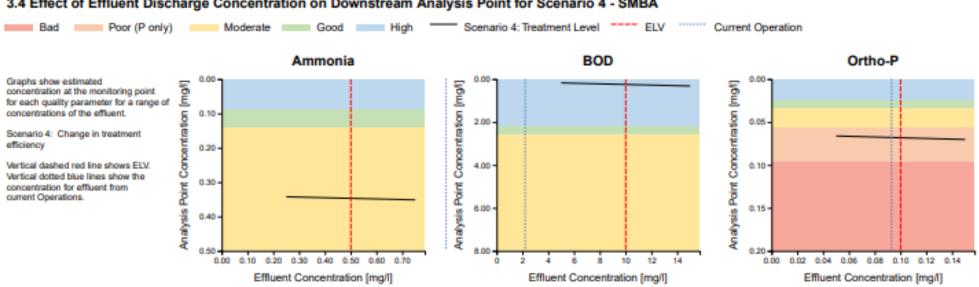


3. Capacity Calculation Results

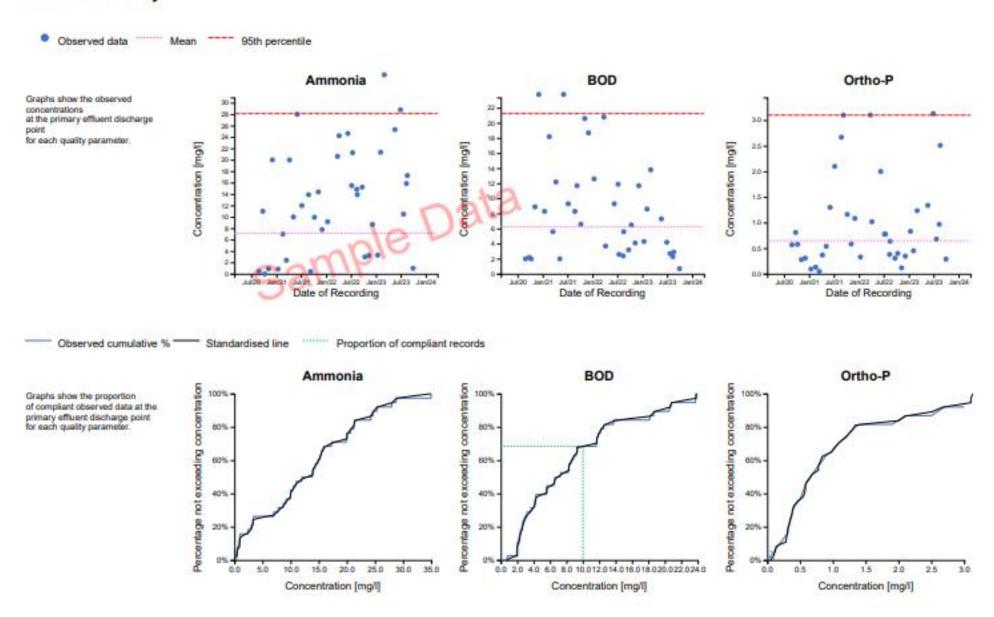
3.1 Effects of Population on Concentration for Scenarios 1 to 3 - MCA



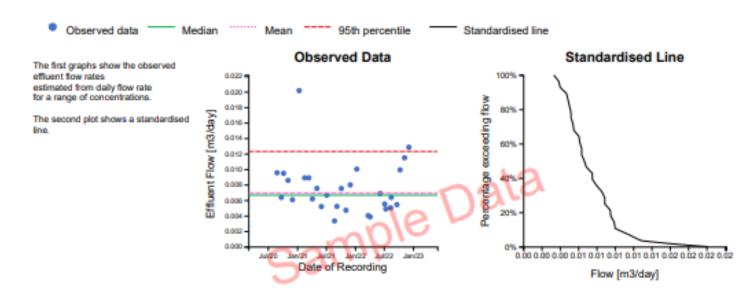
3.2 Effect of Effluent Discharge Concentration on Downstream Analysis Point for Scenario 4 - MCA



3.3 Effects of Population on Concentration for Scenarios 1 to 3 - SMBA



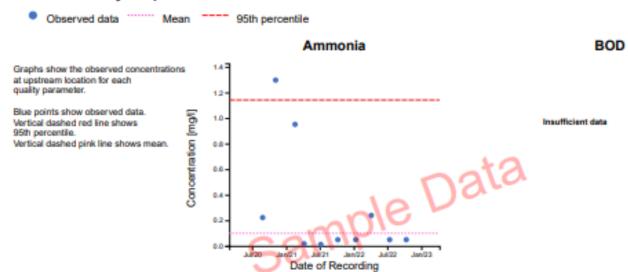
3.4 Effect of Effluent Discharge Concentration on Downstream Analysis Point for Scenario 4 - SMBA



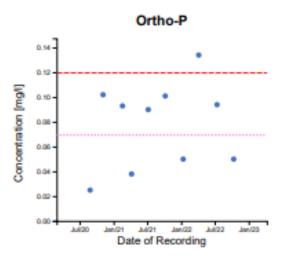
4. Effluent Quality

5. Effluent Flow Rates

Statistic	Value [m3/day]
Median	0.01
Mean	0.01
95th Percentile	0.0123
Standard Deviation	1.48
Samples	29

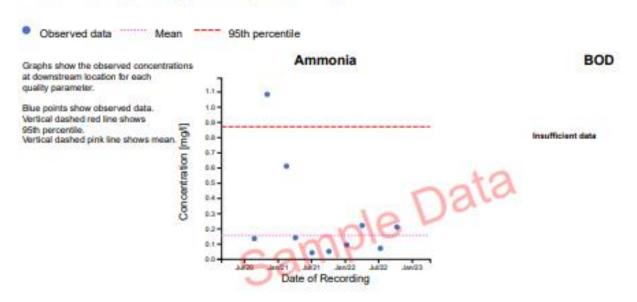

Percentile	Value [m3/day]
1	0.0035
5	0.0039
10	0.0046
20	0.0051
30	0.0055
40	0.0062
50	0.0067
60	0.0075
70	0.0088
80	0.0095
90	0.0103
95	0.0123
99	0.0181

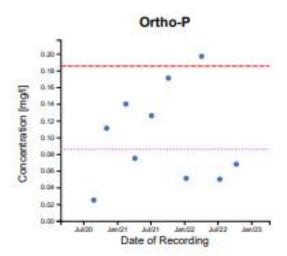
Year	Max Value [m3/ day]
2023	Insuff. data
2022	Insuff. data
2021	Insuff. data
2020	Insuff. data



7. River Water Quality at the Upstream and Analysis Points

7.1 Water Quality at Upstream


Statistic	Ammonia [mg/l]	BOD [mg/l]	Ortho-P [mg/l]	
Min	0.01	Insuff. data	0.03	
Median	0.05	0.26	0.09	
Mean	0.10	1.30	0.07	
95th Percentile	1.14	2.20	0.12	
Max	1.30	Insuff. data	0.13	
Standard Deviation	4.79	0.13	1.71	
Samples	10	0	10	



13

7.2 Water Quality at Analysis Point (Downstream)

Statistic	Ammonia [mg/l]	BOD [mg/l]	Ortho-P [mg/l]
Min	0.04	Insuff. data	0.03
Median	0.14	0.26	0.09
Mean	0.15	1.30	0.09
95th Percentile	0.87	2.20	0.19
Max	1.08	Insuff. data	0.20
Standard Deviation	2.85	0.13	1.91
Samples	10	0	10

Kingscourt WWTP(D0083-01) - 12/12/2023